STOR 155 Introductory Statistics

Lecture 1: Overview; Displaying Distributions with Graphs
Tip: Strategy for Success

• Stay active/involved in class.
• Ask questions during class (especially if you do not understand something).
• Answer questions to help other students if you can.
• Keep pace with the lectures, review daily, do homework after each lecture to help understand the materials.
• Make effective use of office hours (Instructor), open tutorial sessions, UNC Learning Center.
 – Help you answer questions about homework and lectures
 – Private time vs. public time
What is Statistics?

Statistics: the science of collecting, organizing, analyzing and interpreting *data* (= information)
SAT Scores

• Some parents and teachers have been concerned about the trend of declining SAT scores …

• Question: effect of classroom atmosphere (*strict* or *liberal*)?

• To answer the question, 50 students (24 males and 26 females) participated in a study on their performance, as measured by SAT scores at the end of the school year.

• The students were divided into two groups of 25 each (12 males and 13 females), with Group 1 to study under a *strict* atmosphere while Group 2 under a very *permissive* atmosphere.

• They were matched according to socio-economic background.
SAT Scores

- After 9 months, all students were given the same standardized tests: verbal and math.

<table>
<thead>
<tr>
<th>Student</th>
<th>Group</th>
<th>Gender</th>
<th>SATMath</th>
<th>SATVer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strict</td>
<td>F</td>
<td>670</td>
<td>700</td>
</tr>
<tr>
<td>B</td>
<td>Strict</td>
<td>M</td>
<td>700</td>
<td>680</td>
</tr>
<tr>
<td>C</td>
<td>Liberal</td>
<td>F</td>
<td>750</td>
<td>730</td>
</tr>
<tr>
<td>D</td>
<td>Liberal</td>
<td>M</td>
<td>690</td>
<td>750</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
SAT Scores

• This example involves *data collection, data analysis, and statistical inference*.
 – How?

• Questions:
 – Does stricter classroom atmosphere increase the average score?
 – Why “matched according to socio-economic background”?
 – Why “12 males and 13 females per group”?
 – Is the group size 50 large enough to make a confident conclusion?
Fundamental Concepts

• **Population**: the entire group of individuals that we want information about.
 – Students (who are about to take SAT)

• **Sample**: a part of the population that we actually examine in order to gather information.
 – those students selected into the study

• **Sample size**: number of observations/individuals in a sample.
 – 50

• **Statistical inference**: to make an inference about a population based on the information contained in a sample.
 – Based on the data from the study, to infer whether a stricter classroom atmosphere increases SAT scores in general.
Fundamental Concepts

• A *parameter* is a value that describes the population. It’s fixed but unknown in practice.
 – the average SAT score of all the students, who are about to take SAT.

• A *statistic* is a value that describes a sample. It’s known (calculated) from the sample.
 – the average SAT score of all the students, who are selected into the study.
 – a sample analogue of the parameter.
Practice Exercise

• Suppose you are interested in finding the average SAT score of UNC unders,
 -- SAT scores of all UNC unders in STOR155 (sample)
 -- SAT scores of all UNC unders (population)
• Suppose you are interested in finding the average SAT score of US unders,
 – SAT scores of all UNC unders ()
 – SAT scores of all US unders ()
Summary

• **Statistics is the science of data:**
 – Collecting
 – Organizing and analyzing
 – Decision making

 = Information processing

• **Fundamental concepts:**
 – Population, parameter, sample, statistic, sample size

• **You can do a LOT with statistics … what?**
Take home message

- Interested in population, but it’s too large to become known completely
- Statisticians work on sample, which is a smaller and observable "proxy"
- There is uncertainty in this transition, hence errors are inevitable …
- That’s why statistical methods are needed …
Chapter 1: Looking at Data - Distributions

1.1 Displaying Distributions with Graphs

1.2 Displaying Distributions with Numbers

1.3 Density Curves and Normal Distributions
Data

Data contain

- **Individuals**: the subjects described by the data;
- **Variables**: any characteristic of an individual. A variable can take different values for different individuals.
Categorical & Quantitative Variables

• A **categorical variable** places an individual into one of several groups or categories.

• A **quantitative variable** takes numerical values for which arithmetic operations such as adding and averaging make sense.
NBA Draft 2005

<table>
<thead>
<tr>
<th>Name</th>
<th>Team</th>
<th>Nationality</th>
<th>Weight</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Bogut</td>
<td>Milwaukee</td>
<td>Australia</td>
<td>245</td>
<td>7-0</td>
</tr>
<tr>
<td>M. Williams</td>
<td>Atlanta</td>
<td>US</td>
<td>230</td>
<td>6-9</td>
</tr>
<tr>
<td>D. Williams</td>
<td>Utah</td>
<td>US</td>
<td>210</td>
<td>6-3</td>
</tr>
<tr>
<td>C. Paul</td>
<td>New Orleans</td>
<td>US</td>
<td>175</td>
<td>6-0</td>
</tr>
<tr>
<td>R. Felton</td>
<td>Charlotte</td>
<td>US</td>
<td>198</td>
<td>6-1</td>
</tr>
</tbody>
</table>

...
NBA Draft 2005

• Variables:
 – Team & Nationality - Categorical
 – Weight & Height - Quantitative

• How many teams in the draft? How many players drafted by each team?
• How many players higher than 6-9? How many players between 200 and 250 pounds?
• Equivalently, what is the distribution for each variable?
Distributions of Variables

• The distribution of a variable indicates what values a variable takes and how often it takes these values.
 – For a categorical variable, distribution: categories + count/percent for each category
 – For a quantitative variable, distribution: pattern of variation of its values
Highest Level of Education for People Aged 25-34

<table>
<thead>
<tr>
<th>Education</th>
<th>Count (millions)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than high school</td>
<td>4.6</td>
<td>11.8</td>
</tr>
<tr>
<td>High school graduate</td>
<td>11.6</td>
<td>30.6</td>
</tr>
<tr>
<td>Some college</td>
<td>7.4</td>
<td>19.5</td>
</tr>
<tr>
<td>Associate degree</td>
<td>3.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>8.6</td>
<td>22.7</td>
</tr>
<tr>
<td>Advanced degree</td>
<td>2.5</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Exploratory Data Analysis (EDA)

- Use statistical tools and ideas to help us examine data
- Goal: to describe the main features of the data
- NEVER skip this
- EDA
 - Displaying distributions with graphs
 - Displaying distributions with numbers
Basic Strategies for EDA

- **Strategy I**
 1. One variable at a time
 2. Relationships among the variables

- **Strategy II**
 1. Graphical visualizations
 2. Numerical summaries
Graphic Techniques for Categorical Variables

- **Bar Graph** uses bars to represent the frequencies (or relative frequencies) such that the height of each bar equals the frequency or relative frequency of each category.
 - Frequencies: counts
 - Relative frequencies: percent
 - height indicates count or percent

- **Pie Chart** is a circle divided into a number of slices that represent the various categories such that the size of each slice is proportional to the percentage corresponding to that category.
 - area = relative %
 - Note: Pie chart requires to include all the categories that make up a whole.
Highest Level of Education for People Aged 25-34

<table>
<thead>
<tr>
<th>Education</th>
<th>Count (millions)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than high school</td>
<td>4.6</td>
<td>11.8</td>
</tr>
<tr>
<td>High school graduate</td>
<td>11.6</td>
<td>30.6</td>
</tr>
<tr>
<td>Some college</td>
<td>7.4</td>
<td>19.5</td>
</tr>
<tr>
<td>Associate degree</td>
<td>3.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>8.6</td>
<td>22.7</td>
</tr>
<tr>
<td>Advanced degree</td>
<td>2.5</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Graphic Techniques for Quantitative Variables

- Stemplot (Stem-and-Leaf Plot)
- Histogram
- Time plot
Stemplot

• Separate each observation into a stem consisting of all but the final (rightmost) digit and a leaf, the final digit. Stems may have as many digits as needed, but each leaf contains only a single digit.

• Write the stems in a vertical column with the smallest at the top, and draw a vertical line at the right of this column.

• Write each leaf in the row to the right of its stem, in increasing order out from the stem.
of Home Runs per Season

- **Babe Ruth (New York Yankees): 1920-1934**
 - 54 59 35 41 46 25 47 60 54 46 49 46 41 34 22

- **Mark McGwire (St. Louis Cardinals): 1986:2001**
 - 3 49 32 33 39 22 42 9 9 39 52 58 70 65 32 29

- **Question:** (see Ex 1.7 p9 –11 1st …)
 - Work out the stem-plot of McGwire
 - back-to-back stem-plot of the two players
Example: Midterm Scores of STOR 151

The following data set contains the midterm exam scores of STOR 151.

74	76	78	88	87	87	53	95	82	79	79	78
62	80	77	70	60	60	84	95	85	93	79	84
71	85	100	77	72	95	79	83	97	87	73	84
74	83	85	95	62	50	86	83	86	36		
Splitting & Trimming Stems

• For a moderate number of obs,
 – Split each stem into two: one with leaves 0-4 and the other with leaves 5-9
 – Increase # of stems, reduce # of leaves

• Trimming:
 – If the observed values have too many digits, you can trim them by rounding to a certain digit.

• Disadvantage of stemplots
 – Awkward for large data sets
Example: A study on litter size

- **Data**: (170 observations)

```plaintext
4  6  5  6  7  3  6  4  4  6  4  4  9  5 10  6  6  5  6  6  
8  2  7  7  9  3  7  5  7  7  4  5  5  6  7  6  7  8  
6  6  7  6  6  7  5  4  5  6  6  1  3  4  7  5  4  7  5  
8  8  5  6  8  5  5  4  9  6  7  3  7  7  5  4  6  9  6  
7  7  5  7  3  7  6  5  3  7 10  5  6  8  7  5  5  7  5  
5  8  9  7  5  7  5  5  5  6  3  7  8  7  7  6  3  4  4  
4  7  2  7  8  5  8  6  6  5  6  4  7  5  5  6  9  3  5  
4  8  3  9  8  3  6  5  4  7  8  4  8  6  8  5  6  4  3  
8  8  6  9  5  5  6  6  7  6  8  6 11  6  5  6  6  3  
```
Stem-and-leaf plot for pups

0|1223333333333333344… (35)
0|5555555555555555555555555… (132)
1| 001
Take Home Message

- **Data:**
 - Individuals
 - Variables
 - Categorical variables
 - Quantitative variables

- **Distribution of variables**

- **Graphical tools for categorical data**
 - Bar graph
 - Pie chart

- **Graphical tools for quantitative data**
 - Stemplot