STOR 155 Introductory Statistics

Lecture 4:
Displaying Distributions with Numbers (II)
Numerical Summary for Distributions

• **Center**
 – Mean
 – Median
 – Mode

• **Spread**
 – Quartiles, IQR, Five-number summary and Boxplot
 – Standard Deviation (starting from page 14)
Examples: 2004 Two-Seater Cars

- Highway mileages of the 21 two-seater cars:
 13 15 16 16 17 19 20 22 23 23 23 24 25 25 26 28 28 28 29 32 66
- Q1 = 18
- Q3 = 28
- IQR = Q3 – Q1 = 10
- 1.5*IQR = 15
- Q3+1.5*IQR = 43
- Q1-1.5*IQR = 3
- 66 is a suspected outlier.
The five-number summary

- To get a quick summary of both center and spread, use the following five-number summary:

 Minimum Q1 M Q3 Maximum
Example: HWY Gas Mileage of 2004 Two-seater/Mini Cars

- **Two-seater**
 - Five-number summary:
 - 13, 18, 23, 27, 32

- **Mini-compact**
 - Five-number summary:
 - 19, 23, 26, 29, 32
Boxplots

• a visual representation of the five-number summary.

• A boxplot consists of
 – A central box spans the quartiles Q1 and Q3.
 – A line inside the box marks the median M.
 – Lines extend from the box out to the smallest and largest observations.
Boxplots of highway/city gas mileages (Two-seaters/minicompacts)
Pros and cons of Boxplots

• Location of the median line in the box indicates symmetry/asymmetry.
• Best used for side-by-side comparison of more than one distribution at a glance.
• Less detailed than histograms or stem plots.
• The box focuses attention on the central half of the data.
Income for different Education Level

![Box plot showing income for different education levels](image)

- No HS
- Some HS
- HS grad
- Some college
- Bachelor’s
- Higher degree

Income in thousands:

- 0
- 40,000
- 80,000
- 120,000
- 160,000
- 200,000
Modified Boxplot

- The current boxplot cannot reveal those possible outliers.

- To modify it,
 - the two lines extend out from the central box only to the smallest and largest observations that are not suspected outliers.
 - Observations more than 1.5*IQR outside the box are plotted as individual points.
Table 1.1

<table>
<thead>
<tr>
<th>Call length (seconds) for calls to a customer service center</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
</tr>
<tr>
<td>126</td>
</tr>
<tr>
<td>372</td>
</tr>
<tr>
<td>179</td>
</tr>
<tr>
<td>89</td>
</tr>
<tr>
<td>148</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>121</td>
</tr>
</tbody>
</table>

Table 1-1

Introduction to the Practice of Statistics, Fifth Edition

© 2005 W.H. Freeman and Company
HG for count in a given time interval

7.6% of all calls are \(\leq 10 \) seconds long

Figure 1-2
Introduction to the Practice of Statistics, Fifth Edition
© 2003 W.H. Freeman and Company
Figure 1-18
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W.H. Freeman and Company
Sample Variance s^2

- **Deviation from mean**: the difference between an observation and the sample mean:
 $$x_i - \bar{x}$$

- **Sample Variance s^2**: the average of squares of the deviations of the observations from their mean
 $$s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n-1}$$
 $$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
Sample Standard Deviation s:

- **Sample Standard Deviation** s: the square root of the sample variance

\[s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \]
Toy Examples

• Data:
 -2, -1, 0, 1, 2
• What is the sample variance and the standard deviation?
• How about this?
 40, 40, 40, 40, 40
Remarks on the definition of Standard Deviation (S.D.)

- The sum of the deviations of the obs from their mean is always 0.

- Why “square the deviations” rather than “absolute deviations”?
 - Mean is a natural center under the “squaring”.
 - S.D. is a natural measure of spread for the normal distributions.
Remarks on S.D.

• Why “S.D.” rather than “variance”?
 – S.D. is natural for measuring spread for normal dist.
 – S.D. is in the original scale.

• Why “n-1” rather than “n”?
 – Intuitively speaking, S.D. is not defined for n=1.
 – Sum of deviations is always 0, which means “if we
 know (n-1) of them, we know the last one”.
 – Only (n-1) deviations can change freely.
 – n-1: degrees of freedom.
Properties of the standard deviation (S.D.) s

- s measures the spread about the mean;
- s should be used only when the mean is chosen to measure the center;
- $s=0$ if and only if there is no spread;
 - When?
- $s>0$ almost always, increases with more spread;
- s, like the mean, is not resistant, i.e. sensitive to outliers.
Examples: 2004 Two-seater Cars

Highway mileages of the 21 two-seater cars:
13 15 16 16 17 19 20 22 23 23 23 24 25 25 26 28 28 28 29 32 66

• Gasoline-powered cars
 – Mean: 22.6
 – S.D.=5.3

• All cars
 – Mean: 24.7
 – S.D.=10.8
Three measures of spread

• The *range* is the spread of all the observations;

• The *interquartile range* is the spread of (roughly) the middle 50% of the observations;

• *S.D.* is a measure of the distance from sample mean. S.D. can be regarded as a “typical” distance of the observations from their mean.
The five-number summary vs Mean and S.D.

- The five-number summary is preferred for a skewed distribution or a distribution with strong outliers.
- \bar{x} and s are preferred for reasonably symmetric distributions that are free of outliers.

- Always plot your data first.
- Use boxplots.
Changing the unit of measurement

- The same variable can be recorded in different units of measurement.

- **Distance:**
 - Miles (US) vs Kilometers (Elsewhere)
 - 1 mile = 1.6 km
 - 1 km = ? mile

- **Temperature**
 - Fahrenheit (US) vs Celsius (Elsewhere)
 - 0 F = -17.8 C
 - 100 F = 37.8 C
 - 212 F = 100 C
Boiled Billy

• An Australian student Billy has recently been on a trip to the States. Soon after he arrived there, he caught a cold and had a fever.

• He went to see Doctor Z. Doctor Z measured his body temperature and told Billy, “Just relax! No big deal! It’s only a little above 100 degree!”

• “100!!!”, Billy yelled, “How can you say it’s not a big deal? I am boiled…”
Linear Transformation

• A linear transformation changes the original variable x into a new variable x_{new} according to the following equation,

\[x_{new} = a + bx. \]

• Temperature: Celsius vs Fahrenheit
 – x in Celsius, x_{new} in Fahrenheit,

\[x_{new} = 32 + \frac{9}{5} x. \]

 – How about the inverse transformation?
Effects of Linear Transformation

• The shape of a distribution remains unchanged, except that the direction of the skewness might change.
 – When?

• Measures of center and spread change.
 – Multiplying each obs by a positive number b multiplies both measures of center and spread by b;
 – Adding the same number a to each obs adds a to measures of center and to percentiles, but does not change measures of spread.
Example: Salary Raise

• A sample was taken of the salaries of 20 employees of a large company. Suppose everyone will receive a $3000 increase, then
• how will the standard deviation of the salaries change?
• How about the mean?
• How about the median?
• How about Q1 and Q3?
What is the effect of \(x_{\text{new}} = a + bx \)?

- mean of \(X_{\text{new}} = a + b \) (mean of \(X \))
- median of \(X_{\text{new}} = a + b \) (median of \(X \))
- SD of \(X_{\text{new}} = |b| \) (SD of \(X \))
- Variance of \(X_{\text{new}} = b^2 \) (Variance of \(X \))
- IQR of \(X_{\text{new}} = |b| \) (IQR of \(X \))
Take Home Message

- Boxplot, modified boxplot, side-by-side boxplot
- Sample variance and sample standard deviation
- Remarks on the definition of S.D.
 - Why “squaring”?
 - Why S.D. instead of Variance?
 - Why n-1?
- Properties of sample standard deviation
- 3 measures of spread
- Five-number summary vs Mean and S.D.
- Linear transformation and its effects on shape, center and spread