STAT 155 Introductory Statistics

Lecture 9: Least-Squares Regression
Review

• Scatter plot:
 – Association: form, direction, strength
 – Just **graphical**, not **numerical**

• Correlation:
 – Direction, strength, linear
 – Properties
 – Vertical and horizontal lines: \(r = 0 \).

• Correlation cannot tell the exact relationship.
Topics

• Least-Squares Regression
 – Regression lines
 – Equation and interpretation of the line
 – Prediction using the line
• Correlation and Regression
• Coefficient of Determination
Age vs. Mean Height
To predict mean height at age 32 months?
Linear Regression

• Correlation measures the direction and strength of the linear relationship between two quantitative variables

• A regression line
 – summarizes the relationship between two variables if the form of the relationship is linear.
 – describes how a response variable y changes as an explanatory variable x changes.
 – is often used as a mathematical model to predict the value of a response variable y based on a value of an explanatory variable x.
Equation of a straight Line

• A straight line relating \(y \) to \(x \) has an equation of the form:

 \[
 y = a + bx
 \]

 – \(x \): explanatory variable
 – \(y \): response variable
 – \(a \): y-intercept
 – \(b \): slope of the line
How to fit a line?
Error

Predicted $\hat{y}_7 = a + 24b$

Error $= y - \hat{y}$

Observed $y_7 = 79.9$

$x_7 = 24$
Least-Square Regression Line

• A line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible.

• Mathematically, the line is determined by minimizing

$$\sum(y_i - a - bx_i)^2$$
The least-squares regression line of y on x is
\[\hat{y} = a + bx \]
with slope
\[b = r \frac{s_y}{s_x} \]
and intercept
\[a = \bar{y} - b \bar{x} \]
Interpreting the Regression Line

- The slope \(b \) tells us that
 - along the regression line, a change of one standard deviation in \(x \) is equivalent to a change of \(r \) standard deviations in \(y \).
 - a change of 1 unit in \(x \) is equivalent to \(b \) units in \(y \).

- The point \((\bar{x}, \bar{y}) \) is always on-line.

- If both \(x \) and \(y \) are standardized, the slope will be \(r \), the intercept will be 0.
 - the origin \((0, 0)\) is on-line.
 \(\text{why ?} \)

- \(r \) and \(b \) have same sign.
Example: Age vs. Height

\[\hat{y} = 64.932 + 0.6348 \, x \]

\[\bar{x} = 23.5, \bar{y} = 79.85 \]

\[s_x = 3.606, s_y = 2.302 \]

\[r = 0.9944 \]

\[b = r \frac{s_y}{s_x} \]

\[a = \bar{y} - b \bar{x} \]
Prediction

\[\hat{y} = a + bx \]

is a prediction when the explanatory variable \(x = x \).

- What is the average height for a child who is 30-month old?
- How about a 30-year old?
- Do not extrapolate too much for prediction.
Correlation and Regression

• Both for linear relationship between two variables.
 – Same sign between b and r.
• r does not depend on which is x and which is y.
• But a regression line does (causality).
Regression lines depend on (x,y) or (y,x).
Coefficient of Determination r^2

- The **square of the correlation**, r^2, is the proportion of variation in the values of y that is explained by the regression model with x.

- $0 \leq r^2 \leq 1$.

- The larger r^2, the stronger the *linear* relationship.

- The closer r^2 is to 1, the more confident we are in our prediction.
Age vs. Height: $r^2 = 0.9888$.
Age vs. Height: $r^2 = 0.849$.
Take Home Message

- **Least-Squares Regression**
 - Regression lines
 - Equation and interpretation of the line
 - Prediction using the line
- **Correlation and Regression**
- **Coefficient of Determination**