(1) Let X_1, \ldots, X_n be iid with $X_1 \sim N(\theta, 1)$. Consider the following two sets of hypotheses:

Set I: $H_0: \theta = 0$ vs $H_1: \theta \neq 0$;

Set II: $H_0: \theta = 0$ vs $H_1: |\theta| \geq 1$.

For which set it is easier to distinguish H_1 from H_0 based on X_1, \ldots, X_n? Justify your answer.

(2) Let X have the density

$$f(x|\theta) = \begin{cases} \theta(x + \theta)^{-2}, & x > 0, \\ 0, & x \leq 0, \end{cases}$$

where $\theta > 0$ is an unknown parameter.
Construct an UMA-LCB of level \(1 - \alpha \) for \(q(\theta) = \log \theta \) based on \(X \).

(3) Assume \(X_1, \ldots, X_n \) are iid from a common Poisson distribution with mean \(\lambda \). Let \(\theta = \lambda^2 \) and denote
\[
S_n = \sum_{i=1}^{n} X_i, \quad X^n = (X_1, \ldots, X_n).
\]
(a) Calculate the expectation \(E_{\theta} S_n^2 \).

(b) Find a minimal sufficient statistic for \(\theta \).

(c) Find a complete sufficient statistic for \(\theta \).

(d) Find the UMVUE \(T(X^n) \) for \(\theta \).
(e) Find the MLE $\hat{\theta}$ based on X^n.

(f) Calculate the Fisher information $I(\theta)$ associated with X^n.

(g) Is the Cramér-Rao lower bound for the variance of an unbiased estimator of θ attained? Justify your answer.

(4) Suppose $X \sim p_{\theta}$, $\theta \in \{0, 1, 2\}$, where $p_0(x) = \frac{1}{3}$, for $x = 0, 1, 2$; $p_1(1) = \frac{1}{3}$, $p_1(2) = \frac{2}{3}$; and $p_2(0) = \frac{1}{4}$, $p_2(2) = \frac{2}{3}$.
(a) Find a UMP test of level \(\frac{1}{3} \) for \(H_0 : \theta = 0 \) vs \(H_1 : \theta = 1 \) or 2. (Hint: Consider two “simple vs simple” problems separately, then ...)

(b) Does there exist a UMP test of level \(\frac{2}{3} \)? Does a randomized test help? Why?

(5) Suppose \(X_1, ..., X_n \) are iid from a common Poisson distribution with mean \(\lambda \), and \(Y_1, ..., Y_n \) are iid from a common Poisson distribution with mean \(\mu \). Denote \(X^n = (X_1, ..., X_n) \) and \(Y^n = (Y_1, ..., Y_n) \). Assume \(X^n \) and \(Y^n \) are independent.

(a) Find a Wald test for \(H_0 : \lambda = \mu \) vs \(H_1 : \lambda \neq \mu \).
(b) Find a large sample confidence interval of level $1 - \alpha$ for $\theta = \lambda - \mu$.

(6) Let $\theta \in \{1, \ldots, 20\}$. Assume $P_{\theta}(X = x) = \frac{1}{\theta}$ for $x = 1, \ldots, \theta$. Show that for any function g, $g(X)$ is an admissible estimator of $g(\theta)$ under the squared error loss.

(7) For $n > 1$, let X_1, \ldots, X_n be iid with common density

$$f(x|\theta) = \frac{e^x}{e^{\theta} - e^{-\theta}}, \quad x \in [-\theta, \theta],$$

where $\theta > 0$ is an unknown parameter. Write $X^n = (X_1, \ldots, X_n)$.

(a) Find a 1D minimal sufficient statistic for θ based on X^n.
(b) Show that $T_n = \max\{|X_1|, \ldots, |X_n|\}$ is the MLE for θ.

c) Show that T_n is a consistent estimator with an exponential rate of convergence.

d) Assume θ follows a (prior) uniform distribution over $(0, 1)$. Conduct a Bayesian test based on a single observation $X_1 = 1/3$ for the hypotheses $H_0 : \theta \leq 2/3$ vs $H_1 : \theta > 2/3$.