In this lecture, a basic framework of hypothesis testing will be presented, followed by an introduction to likelihood ratio tests.

10.1 Basic elements in hypothesis testing

- **Data model**: \(X \sim f(x|\theta), \ x \in \mathcal{X}, \ \theta \in \Theta. \)
- **Parameter space decomposition**: \(\Theta = \Theta_0 \cup \Theta_1 \) with \(\Theta_0 \cap \Theta_1 = \emptyset. \)
- **A two-decision problem**: \(\mathcal{A} = \{a_0, a_1\}, \) where the action \(a_i \) claims \(H_i : \theta \in \Theta_i, \ i = 0, 1, \) with a null hypothesis \(H_0 \) and an alternative hypothesis \(H_1. \)
- **A test function** \(d: \mathcal{X} \rightarrow \mathcal{A} \), or simply \(d: \mathcal{X} \rightarrow \{0, 1\}. \)
- The 0-1 loss \(L(\theta, a_i) = I_{\{\theta/\in \Theta_i\}} \) corresponds to the type I error \(L(\theta, a_1) \) and type II error \(L(\theta, a_0) \) respectively.
- **“risk function = error probability”**: \(R(\theta, d) = \mathbb{P}_{\theta}(d(X) \neq i), \ \theta \in \Theta_i, \ i = 0, 1. \)
- **Power function** of test \(d: \beta(\theta) = \beta(\theta; d) = \mathbb{P}_{\theta}(d(X) \neq 0) = \mathbb{P}_{\theta}(\text{reject } H_0); \) in particular, \(\beta(\theta) = \begin{cases} \text{type I error probability,} & \text{for } \theta \in \Theta_0, \\ 1 - \text{type II error probability,} & \text{for } \theta \in \Theta_1, \end{cases} \) (power of the test \(d. \)
- \(\alpha \in (0, 1) \) is called the **significance level** of test \(d \) if \(\sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha; \) \(\alpha \) is called the **size** of test \(d \) if \(\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha. \) Apparently, a size-\(\alpha \) test is also a level-\(\alpha \) test, but not vice versa.
- A hypothesis \(H \) (null or alternative) is called a **simple** (resp. **composite**) hypothesis if and only if \(H \) is a singleton, i.e. \(H \) contains only a single parameter value.
- **Critical region (rejection region)**: \(R = \{x \in \mathcal{X} : d(x) \neq 0\}, \) and **acceptance region**: \(A = \{x \in \mathcal{X} : d(x) = 0\}; \) having observed \(x \in R, \) a size-\(\alpha \) test rejects \(H_0 \) with type I error probability \(P_0(R) \leq \alpha \ \forall \ \theta \in \Theta_0. \)
- **Randomized test** \(\delta: \) given observation \(x, \) a probability distribution is defined over \(\mathcal{A} \) with \(\delta(x, a_0) + \delta(x, a_1) = 1; \) i.e. Having observed \(x, \) we will reject \(H_0 \) with probability \(\delta(x, a_1) \) and accept \(H_0 \) with probability \(\delta(x, a_0). \) (Think about how to realize that.) The power function for a randomized test \(\delta \) is \(\beta(\theta; \delta) = E_\theta \delta(X, a_1). \) Randomized decision rules can be useful in certain applications, e.g. when we study Neyman-Pearson tests in Lecture 11.
10.2 Likelihood ratio tests (LR tests)

Just like MLEs in point estimation, LR tests enjoy great popularity in hypothesis testing due to their generality. The idea applies to almost all parametric models, and some nonparametric extensions of LR tests have also been developed.

First, for given data \(x \), the ratio \(R(x) = \frac{\sup_{\theta \in \Theta_1} L(\theta | x)}{\sup_{\theta \in \Theta_0} L(\theta | x)} \) tends to get large if \(H_0 \) is false.

Second, it is more convenient to work with the ratio \(\Lambda(x) = \frac{\sup_{\theta \in \Theta} L(\theta | x)}{\sup_{\theta \in \Theta_0} L(\theta | x)} \), called a likelihood ratio statistic.

Note: \(\Lambda(x) = \max \{ R(x), 1 \} \) hence the two ratios are equivalent. \(\lambda(x) = \frac{1}{\Lambda(x)} \) is used as a LR statistic in Casella and Berger.

A recipe for LR tests

Step 1: Find MLE \(\hat{\theta} \).

Step 2: Find the restricted MLE \(\hat{\theta}_0 \) on \(\Theta_0 \).

Step 3: Convert the LR statistic \(\Lambda(x) = \frac{L(\theta | x)}{L(\theta_0 | x)} \) to an operating characteristic whose distribution can be found or approximated.

Example 10.1 (a two-sample t test) Let \(X_1, ..., X_m \) be iid samples from \(N(\mu_x, \sigma^2) \), and \(Y_1, ..., Y_n \) be iid samples from \(N(\mu_y, \sigma^2) \). Assume \(X^m \) and \(Y^n \) are independent, \(\theta = (\mu_x, \mu_y, \sigma^2) \). Test \(H_0 : \mu_x = \mu_y \) vs \(H_1 : \mu_x \neq \mu_y \).

Step 1: The MLEs are \(\hat{\mu}_x = \bar{X} \), \(\hat{\mu}_y = \bar{Y} \), and (a pooled estimate) \(\hat{\sigma}^2 = \frac{1}{m+n} [\sum_{i=1}^{m} (X_i - \bar{X})^2 + \sum_{j=1}^{n} (Y_j - \bar{Y})^2] \).

Step 2: Under \(H_0 \), \(\mu_x = \mu_y = \hat{\mu} \). The restricted MLEs on \(\Theta_0 \) are

- \(\hat{\mu}_0 = \frac{1}{m+n} (\sum_{i=1}^{m} X_i + \sum_{j=1}^{n} Y_j) \) and
- \(\hat{\sigma}_0^2 = \frac{1}{m+n} [\sum_{i=1}^{m} (X_i - \hat{\mu})^2 + \sum_{j=1}^{n} (Y_j - \hat{\mu})^2] \).

Step 3: \(\Lambda_{m,n} \triangleq \Lambda(X^m, Y^n) = \left(\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2} \right)^{\frac{m+n}{2}} \). To simplify \(\Lambda_{m,n} \), note that

\[
\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2} = 1 + (m + n - 2)^{-1} T^2
\]

where under \(H_0 \), \(T = \frac{\bar{X} - \bar{Y}}{\sqrt{(\frac{1}{m} + \frac{1}{n}) \frac{m+n}{m+n-2} \hat{\sigma}^2}} \) follows a central \(t \) distribution with degree of freedom \(m + n - 2 \). Since \(\Lambda_{m,n} \) is increasing in \(|T| \), we reject \(H_0 \) if \(|T| > c \), where \(c \) is determined by the size \(\alpha \).
The calculation of the power function involves a non-central t distribution with non-centrality parameter $\eta = \frac{\mu_x - \mu_y}{\sqrt{(\frac{1}{m} + \frac{1}{n})\sigma^2}}$ for $\theta \in \Theta_1$.

Note: More examples of finite-sample LR tests will be dealt with in homework problems. Later, we will study large-sample LR tests.