(1) Consider a one-way ANOVA model. There are 3 small classes with sizes $n_1 = 10$, $n_2 = 12$ and $n_3 = 15$ students respectively. Let y_{ij} represent the test score of student j in class i. Assume y_{ij}'s are independent random variables with $y_{ij} \sim N(\theta_i, \sigma^2)$, $j = 1, \ldots, n_i$ and $i = 1, 2, 3$. $\theta_1, \theta_2, \theta_3$ and σ^2 are unknown parameters. Suppose we want to test H_0: $\theta_1 = \theta_2 - 2 = \theta_3 - 5$ (reduced model) versus the full model H_1.

(1a) (6 points) Complete the following ANOVA table by filling each empty cell with the correct numerical value of degree of freedom and corresponding mean square.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>D.F.</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Model</td>
<td>SSR_1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reduced Model</td>
<td>SSR_0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>SSE_0 - SSE_1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>SSE_1</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>SSTO</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: ANOVA table for two nested models

(1b) (6 points) Spell out the following sums of squares in terms of y_{ij}'s:

\[
\begin{align*}
SSTO &= \frac{3}{n} \sum_{i=1}^{3} \left(\bar{y}_{i.} - \bar{y}_{..} \right)^2 \\
SSR_1 &= \frac{3}{n} \sum_{i=1}^{3} n_i \left(\bar{y}_{i.} - \bar{y}_{..} \right)^2 \\
SSE_1 &= \frac{3}{n} \sum_{i=1}^{3} \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}_{i.} \right)^2 \\
SSR_0 &= \frac{3}{n} \sum_{i=1}^{3} \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}_{i.} - \bar{y}_{..} \right)^2 = \text{constant} \\
SSE_0 &= \frac{3}{n} \sum_{i=1}^{3} \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}_{i.} \right)^2 \\
\end{align*}
\]

\[
\begin{align*}
\bar{y}_{i.} &= \bar{y}_{1.}, \bar{y}_{2.}, \bar{y}_{3.} \quad i=1,2,3
\end{align*}
\]

Note: Under H_0, \(\{ \theta_2 = \theta_1 + 2 \} \) \(\theta_3 = \theta_1 + 5 \) the LSE for the single parameter θ_1 is given by:

\[
\hat{\theta}_1 = \frac{1}{n} \left[\sum_{i=1}^{3} y_{i.} - \sum_{i=1}^{3} \left(\bar{y}_{i.} - \bar{y}_{..} \right) \right] = \bar{y}_{..} - \frac{2n_1 + 5n_3}{n} = \bar{y}_{..} - \frac{99}{37}
\]

Hence, \(\hat{\theta}_1 = \bar{y}_{1.} \)

\[
\begin{align*}
\hat{\theta}_2 &= \hat{\theta}_1 + 2 \\
\hat{\theta}_3 &= \hat{\theta}_1 + 5
\end{align*}
\]
(2) Check "Yes" or "No". No explanation needed or considered. (2 points for each of the following 4 parts)

(2a) In the simple linear regression model

\[y_1 = \beta_0 - 3\beta_1 + \epsilon_1, \]
\[y_2 = \beta_0 + \beta_1 + \epsilon_2, \]
\[y_3 = \beta_0 + 2\beta_1 + \epsilon_3, \]

\(\epsilon_i, i = 1, 2, 3 \) are i.i.d \(N(0, \sigma^2) \) random variables, and \(\beta_0, \beta_1 \) and \(\sigma \) are unknown parameters. Are the least square estimators \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) uncorrelated?

Yes \(\checkmark \); No \(\big/ \).

because the coeff. for \(\beta_1 \)
\begin{align*}
&\text{(2b) Recall in Chapter 4, Atkinson proposed the normal/half normal plots for detecting} \\
&\text{influential observations. For example, a simulated envelope consisting of two nearly straight} \\
&\text{lines is generated via percentiles from the standard normal distribution. You did a problem} \\
&\text{in Homework 3 by applying this procedure to the DFFITS measure. Does the same simulated} \\
&\text{envelope method apply to Cook's D measure } D_i = \frac{\hat{e}_i^2}{\hat{\sigma}^2} \frac{1}{(1-h_i)^2} \text{?} \\
&\text{Yes} \big/ \; \text{No} \checkmark.
\end{align*}

(2c) Consider simultaneous confidence intervals (CI's) for \(\beta_i, i = 1, 2, 3 \) in a regression model. Does Scheffe's procedure always yield narrower CI's than Bonferroni's procedure, based on the same data and the same coverage probability?

Yes \(\checkmark \); No \(\big/ \).

(2d) A common sense experience tells us the older a used car, the lower sale value it tends to have. To model this causal relationship between response \(y \) (used car value) and covariate \(x \) (age of the car), is it appropriate to start with a simple linear regression \(y = \beta_0 + \beta_1 x + \epsilon \)?

Yes \(\checkmark \); No \(\big/ \).

Use \(\log y \) as the response instead of \(y \).

(3) The director of admissions in a small college administered a newly designed entrance test to 20 students selected at random from the new freshman class in a study to determine whether a student's grade point average (GPA) at the end of the freshman year (\(y \)) can be predicted from the entrance test score (\(x \)). A simple linear regression model was fitted to the data as follows:

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i; \quad \epsilon_i \text{ i.i.d } \sim N(0, \sigma^2), \quad i = 1, \ldots, n. \]

The edited R output and other summaries are given below.
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | -1.6996 | 0.7268 | -2.338 | 0.0311 * |
| Entrance | 0.6399 | 0.1440 | 4.331 | 1.60e-05 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response: GPA

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance</td>
<td>1</td>
<td>6.4337</td>
<td>6.4337</td>
<td>33.998</td>
</tr>
<tr>
<td>Residuals</td>
<td>18</td>
<td>3.4063</td>
<td>0.1892</td>
<td>0.1892</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\[\sum_{i=1}^{n} y_i = 50, \quad \sum_{i=1}^{n} x_i = 100, \quad \sum_{i=1}^{n} x_i y_i = 257.66, \quad \sum_{i=1}^{n} y_i^2 = 134.84, \quad \sum_{i=1}^{n} x_i^2 = 509.12 \]

(3a) (5 points) Use Bonferroni and Scheffé methods to obtain 90% simultaneous confidence intervals for \(\beta_0 \) and \(\beta_1 \). Which method do you prefer? Why?

For \(B^- \), \(G = t_{n-2, 1-\alpha/2} = t_{18, 1-0.05} = 2.101 \)

For \(S^- \), \(G = \sqrt{S_{S-}^2/n-2; 1-\alpha} = \sqrt{2 \cdot S_{S}, 18} = 2.291 \)

Also, \(SE(\hat{\beta}_0) = 0.7268 \), \(SE(\hat{\beta}_1) = 0.1440 \). Hence, the simultaneous CI's:

For \(B^- \), \[\beta_0 : -1.6996 \pm 2.101 \cdot 0.7268 = (-3.2267, -0.1726) \]
\[\beta_1 : 0.8399 \pm 2.101 \cdot 0.1440 = (0.5374, 1.1424) \]

For \(S^- \), \[\beta_0 : -1.6996 \pm 2.291 \cdot 0.7268 = (-3.3647, -0.0345) \]
\[\beta_1 : 0.8399 \pm 2.291 \cdot 0.1440 = (0.51, 1.1698) \]

(3b) (5 points) Calculate a 90% prediction interval for the GPA at the end of the freshman year for a student with the entrance test score 5.0.

Using \(\bar{y} = 77.8, \bar{x} = (2, 33) \) with \(K = 1 \), \(G = t_{18, 0.95} = 1.734 \),
\[s = \sqrt{0.1892} = 0.435 \], and \(\bar{x} = 5.0 \) implies
\[\sqrt{\frac{1}{n} + \frac{(x-x)^2}{\sum(x_i-x)^2}} + 1 = \sqrt{\frac{1}{18} + 1} = 1.0247 \]. Hence the 90% prediction interval is given by \[77.8 \pm t_{18, 0.95} \cdot s \cdot \sqrt{\frac{1}{n} + 1} \]
\[= 2.5 \pm 1.734 \cdot 0.435 \cdot 1.0247 = (1.727, 3.273) \]
(3c) (5 points) Suppose we want to test \(H_0 : y_i = -1 + x_i + \epsilon_i \) (reduced model) versus \(H_1 : y_i = \beta_0 + \beta_1 x_i + \epsilon_i \) (full model). Derive a F-test procedure, calculate the observed test statistic and state your conclusion using the significance level \(\alpha = 0.1 \).

\[
\text{With } q = 2 \quad \text{and} \quad n-p = 18, \quad F = \frac{(SSE_0 - SSE_1)/(n-p)}{SSE_1/(n-p)} = 119.51
\]

Hence reject \(H_0 \).

More details: \(SSE_1 = 3.4063 \)

and \(SSE_0 = \sum_{i=1}^{20} \left[y_i - (-1 + x_i) \right] = \sum_{i=1}^{20} y_i^2 + 20 + \sum_{i=1}^{20} x_i^2 + 2 \sum_{i=1}^{20} y_i \beta_0 - 2 \sum_{i=1}^{20} x_i \beta_1 \)

\[
= 134.84 + 20 + 509.12 + 100 - 200 - 2 \cdot 257.66 = 48.64
\]

(3d) (5 points) Consider two pairs of parameter values under the alternative \(H_1: (\beta_0, \beta_1) = (-0.5, 1.2) \) and \((\beta_0, \beta_1) = (-0.8, 1.5) \). Which pair would give a higher power for the test you derived in (3c)? Why?

\(\sigma^2 \delta^2 = (h-h')^T \left[C (X^T X)^{-1} C^T \right]^{-1} (h-h') \)

In this case, \(C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) hence

\[
\sigma^2 \delta^2 = (h-h')^T (X^T X) (h-h') \quad \text{where} \quad X^T X = \begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix} = \begin{pmatrix} 20 & 100 \\ 100 & 509.12 \end{pmatrix}
\]

For the alternative pair \((\beta_0, \beta_1) = (-0.5, 1.2) \):

\[
\sigma^2 \delta^2 = (0.5, 0.2) \begin{pmatrix} 20 & 100 \\ 100 & 509.12 \end{pmatrix} (0.5, 0.2) = 45.36
\]

For \((\beta_0, \beta_1) = (-0.8, 1.5) \):

\[
\sigma^2 \delta^2 = (0.2, 0.15) \begin{pmatrix} 20 & 100 \\ 100 & 509.12 \end{pmatrix} (0.2, 0.15) = 148.08
\]

Hence the pair \((-0.8, 1.5) \) will give a higher power.
(4) (10 points) Assume a linear model $Y = X\beta + \epsilon$, where the error vector ϵ has iid $N(0, \sigma^2)$ components. Let α be a fixed $p \times 1$ vector of the same dimension as β, and L be an $n \times 1$ vector of constants, such that LY is an unbiased estimator of $\alpha^T \beta$. Show that LY is the minimum variance linear unbiased estimator of $\alpha^T \beta$ if and only if $D^T Y$ and LY are statistically independent for every $n \times 1$ constant vector D which satisfies $E(D^T Y) = 0$ for all β.

Note: Please prove the sufficiency and necessity respectively by stating clearly the assumption and conclusion in each direction.

Sufficiency \implies : Let $c^T Y$ be any unbiased est. of $\alpha^T \beta$, then $E[(c-L)^T Y] = 0$, hence $(c-L)^T Y$ & LY are independent RV's. Therefore,

$$\text{Var}(c^T Y) = \text{Var}[(c-L)^T Y + LY] = \text{Var}[(c-L)^T Y] + \text{Var}(LY) \geq \text{Var}(LY).$$

Necessity \implies : Suppose LY is BLUE, and $E(D^T Y) = 0$.

For an arbitrary constant $a > 0$, both $(L+aD)^T Y$ & $(L-aD)^T Y$ are unbiased est. of $\alpha^T \beta$.

$$\text{Var}[(L+aD)^T Y] = \text{Var}(LY) + a^2 \text{Var}(D^T Y) + 2a \text{Cov}(LY, D^T Y) \geq \text{Var}(LY) \implies a \text{Var}(D^T Y) + 2 \text{Cov}(LY, D^T Y) \geq 0 \quad \forall \ a > 0 \quad \text{(\#)}$$

By the same token,

$$\text{Var}[(L-aD)^T Y] \geq \text{Var}(LY) \implies a \text{Var}(D^T Y) - 2 \text{Cov}(LY, D^T Y) \geq 0 \quad \forall \ a > 0 \quad \text{...(\#\#)}$$

Let $a \neq 0$ in (\#) & (\#\#) we have

$$\text{Cov}(LY, D^T Y) \geq 0 \quad \text{Hence \ Cov}(LY, D^T Y) = 0$$

$$\text{Cov}(LY, D^T Y) \leq 0 \quad \text{which implies}$$

LY & $D^T Y$ are indep because they are both normal RV's.